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Abstract Prolate spheroidal functions constitute a one-parameter (α) family of orthogonal functions in
the interval. For α = 0, they are the Legendre polynomials. For larger α, the prolate spheroidal functions
oscillate more uniformly than the Legendre polynomials, and provide more uniform resolution in the inter-
val. The prolate spheroidal functions can be obtained by adding a zeroth-order term to the Sturm–Liouville
equation for the Legendre polynomials. Here, the Sturm–Liouville equation for orthogonal polynomials in
the triangle is modified in a similar fashion. The modification maintains the self-adjointness and symmetry
properties of the original Sturm–Liouville equation, so that the new eigenfunctions are orthogonal and give
spectrally accurate approximations of smooth functions with arbitrary boundary conditions in the triangle.
The properties of the new eigenfunctions mimic those in the interval. For larger α, the new eigenfunctions
provide more uniform resolution in the triangle.

Keywords Prolate spheroidal · Triangle · Sturm Liouville · Polynomial approximation

1 Introduction

There has been recent interest in using prolate spheroidal wave functions (PSWFs) for the numerical
solution of partial differential equations [1–5]. The PSWFs are a one-parameter (α) family of orthogonal
functions in the interval [−1, 1] generalizing the Legendre polynomials. For the bandwidth parameter
α = 0, the wave functions are the Legendre polynomials. For values of the bandwidth parameter α > 0,
new families of PSWFs are generated that are no longer polynomials; oscillate more uniformly than the
Legendre polynomials and provide more uniform resolution over [−1, 1]. In the references mentioned
above, more uniform resolution is demonstrated by showing that the expansion of sinusoids in a truncated
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series of α > 0 PSWFs is significantly more accurate than that obtained with a similar number of Legendre
polynomials. Furthermore, the associated collocation points for finite truncations of PSWFs are found to
be more uniformly spaced.

The PSWFs can be obtained from a modification of the Sturm–Liouville equation for the Legendre
polynomials. They are the eigenfunctions of

∂

∂x

(
(1 − x2)

∂u
∂x

)
− α2x2u = λu (1)

in the interval [−1, 1]. For α = 0, this is the classical Sturm–Liouville equation for the Legendre polynomials.
Here we generalize this construction by making a similar modification to the Sturm–Liouville equation

whose eigenfunctions are orthogonal polynomials in two variables over the triangle. To generalize this
equation, we are careful to preserve three key properties:

1. Symmetry. The equation should be invariant under the symmetry group of the domain. For the interval
[−1, 1] this simply means the equation is invariant under a change in sign of x. For the triangle, we
require the equation be invariant under D3, the group of rotations and reflections of the triangle onto
itself. This is so that the eigenfunctions will not, for example, provide more resolution in one corner of
the triangle compared to the remaining corners.

2. Self-adjointness. If the operator is self-adjoint, classic Sturm–Liouville theory gives us a complete set
of orthogonal eigenfunctions. We also preserve the singular nature of the Sturm–Liouville equation,
meaning that the operator is self-adjoint over a space of functions with no imposed boundary conditions
or periodicity. This is all that is required to preserve a key property of the α = 0 polynomial expansions:
for f ∈ C∞, the truncated eigenfunction expansion of f will converge to f faster than any polynomial,
with no boundary requirements on f .

3. Form of the bandwidth term α2x2u. In the triangle, we preserve the quadratic and invariant form of
this term on the belief that this term will also generate eigenfunctions which, for α > 0, provide more
uniform resolution in the triangle as compared to polynomials.

In Sect. 2, we construct a second-order differential operator L in the triangle with all three of the above
properties. The bandwidth parameter is introduced by analogy with the one-dimensional Sturm–Liouville
equation for PSWFs. In Sect. 3, we use a spectral method to solve for the eigenvectors and eigenfunctions
of this generalized equation. Results are given in Sect. 4, where we demonstrate that, as with PSWfs, the
resulting eigenfunctions do indeed have more uniform resolution.

2 Construction of a Sturm–Liouville problem in the triangle

We start by constructing differential operators in the equilateral triangle, as shown in Fig. 1. We con-
struct our operators in this triangle so that their symmetry properties are easily shown, but then map the
equilateral triangle to the right triangle where the equation is more easily solved.

2.1 The triangles Te and Tr

Let Te represent the interior of the triangle, as given by the intersection of y > − 1
2 , y < −√

3x + 1 and

y <
√

3x + 1. The vertices are (0, 1), (−
√

3
2 , − 1

2 ) and (
√

3
2 , − 1

2 ).
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Fig. 1 Edge-based coordinate systems in the equilateral
triangle Te. The a coordinate system is aligned with the
Cartesian coordinates x and y. The unit vectors are given
by â = (0, 1) and â⊥ = (1, 0). The b and c coordinate sys-
tems are obtained by rotating the a coordinate system 120◦
counterclockwise or clockwise
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η
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Fig. 2 The right triangle Tr

We first construct a coordinate system aligned with each edge of the triangle, as shown in Fig. 1. The
unit vectors for these coordinate systems are given by

â = (0, 1), b̂=
(

−
√

3
2

, −1
2

)
, ĉ =

(√
3

2
, −1

2

)
,

â⊥ = (1, 0), b̂⊥ =
(

−1
2

,

√
3

2

)
, ĉ⊥ =

(
−1

2
, −

√
3

2

)
.

We represent a point r = (x, y) in the three coordinate systems by r = aâ + a⊥â⊥ = bb̂+ b⊥b̂⊥ = cĉ + c⊥ĉ⊥.
We denote the group of rotations and reflections of Te onto itself by D3. The rotations of the point

aâ + a⊥â⊥ are given by {aâ + a⊥â⊥, ab̂+ a⊥b̂⊥, aĉ + a⊥ĉ⊥} and its reflections are {aâ − a⊥â⊥, ab̂− a⊥b̂⊥, aĉ
− a⊥ĉ⊥}. Thus, to show that a differential operator is invariant under D3, we need only show that it is
invariant under permutations of the three edge-based coordinate systems and under change of sign of
edge-normal coordinate.

For convenience, our numerical calculations will be performed by mapping the equations given in Te

into the right triangle Tr as shown in Fig. 2. To avoid confusion with the Cartesian coordinates used in Te,
we denote the Cartesian coordinates in the right triangle by (ξ , η). The linear map between Tr and Te is
given in Appendix A.2. The Jacobian is 3

√
3

8 , and the integrals are related by

∫∫
Te

f (x, y) dx dy = 3
√

3
8

∫∫
Tr

f (x(ξ , η), y(ξ , η))dξ dη.

2.2 A second-order invariant self-adjoint operator L

We define the differential operators

∂

∂a⊥
= â⊥ · ∇,

∂

∂b⊥
= b̂⊥ · ∇,

∂

∂c⊥
= ĉ⊥ · ∇, (2)



224 J Eng Math (2006) 56:221–235

where ∇ is the usual Cartesian gradient. We now consider the following second-order differential operator,

La(u) = ∂

∂a⊥

(
p(a, a⊥)

∂u
∂a⊥

)
. (3)

We first note that, if p(a, a⊥) is chosen to vanish along the edges of the triangle perpendicular to b̂ and
ĉ and positive in Te, then La will be negative definite and self-adjoint in H2(Te) (functions in Te with
square-integrable second derivatives). The proof is by straightforward integration by parts and is given
in Appendix A.1. Note that, because La is singular at the boundary, no boundary conditions need to be
imposed on the functions f ∈ H2(Te).

To choose a function p, we consider the lowest-degree polynomial that vanishes on the desired edges,
p(a, a⊥) = ((a − 1)2 − 3a2⊥). It is easy to check that p(a, a⊥) > 0 ∀(a, a⊥) ∈ Te, as shown in Appendix A.2.

We define Lb and Lc as identical operators, but expressed in the b and c coordinate systems, respectively.
Since these operators are just rotations of La, they are also self-adjoint in Te. Now consider the operator

L = 1
3

(La + Lb + Lc) . (4)

This operator is self-adjoint, since it is the sum of self-adjoint operators. To see that L is invariant under D3,
we consider the action of D3 on La. The rotations by 0, 120 and 240 degrees are expressed by La, Lb and
Lc, respectively. The reflection of La about â changes the sign of â⊥ which leaves La unchanged. Reflection
of La about b̂ is equivalent to rotation of â into ĉ followed by reflection about ĉ, which gives Lc. Similarly,
reflection of La about ĉ gives Lb. Thus the action of D3 on L is given by permutations of the subscripts
a, b, c, all of which leave L unchanged.

2.3 Eigenfunctions and eigenvalues of L

We now describe the eigenfunctions and eigenvalues of the Sturm–Liouville problem

L(u) = 1
3

(La(u) + Lb(u) + Lc(u)) = λu (5)

with p(a, a⊥) = (a − 1)2 − 3a2⊥. This equation can be solved analytically by first mapping the equilateral
to the right triangle Tr. The algebra needed to express L in Cartesian coordinates in Tr and Te is given in
Appendix A.3. The result in Tr is

L = ∂

∂ξ

(
(1 + ξ)

[
(1 − ξ)

∂

∂ξ
− (1 + η)

∂

∂η

])
+ ∂

∂η

(
(1 + η)

[
(1 − η)

∂

∂η
− (1 + ξ)

∂

∂ξ

])
. (6)

The eigenfunctions of (5) can then be shown to be a tensor product of Jacobi polynomials [6–8]. They
are in fact the classical orthogonal polynomials in the triangle, previously obtained without the use of
a Sturm–Liouville problem in [9–12]. These polynomials are usually referred to as Dubiner or Proriol
polynomials.

The eigenfunctions of Eq. 5 (Dubiner polynomials) are given by

gmn(ξ , η) = P0,0
m

(
ξ

1 − η

)
(1 − η)mP2m+1,0

n (η)

for non-negative integers (m, n), where Pα,β
n are the Jacobi Polynomials with weight (α, β) and degree n.

Stable recurrence relations for evaluating these polynomials are given in [13].
In this work, instead of the traditional double index (m, n), we will use a single index given by i =

(m + n + 1)(m + n + 2)/2 − m. Using this index, the Dubiner polynomials gi satisfy

L(gi) = digi. (7)
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The eigenvalues are given by

di = dmn = −(m + n)(m + n + 2).

These were first derived in [6], where it was noted that the vector space made up of all eigenfunctions with
eigenvalues less than a constant C is the classic polynomial truncation

Pd = span{xnym, m + n ≤ d}, (8)

with d = 
−1 + √
1 + C�.

2.4 A generalized eigenfunction equation in Te

The similarities of the Sturm–Liouville equation for the interval (Eq. 1) and the Sturm–Liouville equa-
tion in Te (Eq. 5) suggests a natural form for a Sturm–Liouville equation in Te. By analogy with the
one-dimensional case, it is hoped that the eigenfunctions of this equation would result in a more uniform
resolution over the triangle.

We thus want to add a term similar to the α2x2u term from (1). To ensure our new equation remains
invariant under D3, we write it in the a, b and c coordinate systems,

L(u) − α2 1
3
(a2⊥ + b2⊥ + c2⊥)u = λu. (9)

We have added a 1/3 to keep the scaling of α similar to that in (1).
To solve this equation, we again map to Tr and write it as

L(u) − α2hu = λu, (10)

where L is given by (6) and

h = 1
2
(x2 + y2) = 3

16

((
ξ + 1

3

)2

+
(

η + 1
3

)2

+
(

ξ + η + 2
3

)2
)

.

3 Solving for the eigenfunctions

To solve (10), we use a straightforward generalization of the procedure used in [3] to solve for prolate sphe-
roidal basis functions. We use a Dubiner spectral method, meaning that we replace u in the Sturm–Liouville
equation by its expansion in Dubiner polynomials, and then solve for the expansion coefficients.

3.1 Expansion in terms of Dubiner polynomials

We denote the expansion of the unknown eigenfunction u in terms of Dubiner polynomials by

u(ξ , η) =
∞∑

i=1

ũ(i)gi(ξ , η), (11)

where ũ(i) are the Dubiner coefficients of u. Using (7) and (11), we can rewrite (10) in terms of the Dubiner
coefficients and obtain
∞∑

i=1

digiũ(i) − α2
∞∑

i=1

hgiũ(i) =
∞∑

i=1

λũ(i)gi.
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To simplify further, let ai
j be the Dubiner coefficients of hgi,

ai
j =

∫∫
Tr

hgigj dξ dη h(ξ , η)gi(ξ , η) =
∞∑

j=1

ai
jgj(ξ , η) (12)

Substitute this expansion to obtain

∞∑
i=1

digiũ(i) − α2
∞∑

i=1

∞∑
j=1

ai
jgjũ(i) =

∞∑
i=1

λũ(i)gi.

Relabeling and then equating coefficients of gi yields

diũ(i) − α2
∞∑

j=1

aj
iũ(j) = λũ(i). (13)

3.2 Numerical approximation

To solve (13) numerically, we work in the truncated polynomial space Pd given by (8). The dimension of
this space is N = (d + 1)(d + 2)/2, and functions in this space are exactly represented by their N Dubiner
coefficients. Denote the vector of Dubiner coefficients by

ũ =

⎛
⎜⎜⎜⎝

ũ(1)

ũ(2)
...

ũ(N)

⎞
⎟⎟⎟⎠ ,

let D be the N × N diagonal matrix with entries Dii = di, and let A be the N × N matrix with entries
Aij = aj

i. Equation (13), written for ũ is then(
D − α2A

)
ũ = λũ. (14)

Since our differential operator L − α2h is by construction self-adjoint, we expect our discretization to
preserves this property and thus we take care to ensure that D − α2A is symmetric. Then the eigenvectors
ũ of (14) are real, orthogonal and complete in RN . By Plancharel’s equation, the eigenfunctions obtained
by summing the truncated Dubiner series are also exactly orthogonal in the continuous L2 norm over the
triangle.

3.3 Derivation of A

We now describe the procedure used to compute aj
i, the i’th Dubiner coefficients of hgj. We are solving

(14) in the space Pd, so the polynomials gj ∈ Pd and hgj ∈ Pd+2. By virtue of (12), we can ensure that
A is symmetric if we compute these terms exactly, and thus it is necessary to work in the space Pd+2. Let
N′ = (d + 3)(d + 4)/2 be the dimension of this space, and let {(ξk, ηk)} be a set of N′ points in Tr. We can
evaluate the polynomial hgj at the N′ points from its Dubiner coefficients by

h(ξk, ηk)gj(ξk, ηk) =
N′∑
i=1

aj
igi(ξk, ηk). (15)
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Note that gj(ξk, ηk) represents the N′ × N′ Vandermonde matrix G of the Dubiner polynomials evaluated
at the N′ points. If these points are non-degenerate, G will be invertible, and then

aj
i =

N′∑
k

G−1
ik h(ξk, ηk)gj(ξk, ηk). (16)

To compute A, we choose a set of N′ non-degenerate points in Tr, form G, then compute G−1 applied to
hgj via Gaussian elimination. The N′ points must be well conditioned to invert G, so for this we use the
Fekete points computed in [14]. The condition number of G for those points is less than 110 for polynomial
truncations up to P30 with N′ ≤ 496.

Finally, we note that, because of the recurrence relations used to construct Dubiner polynomials, it can
be shown that a quadratic polynomial times a Dubiner polynomial can be expanded in at most 15 other
Dubiner polynomials. Thus each column of A will have at most 15 entries.

3.4 Generalized eigenfunctions in Te

We solve Eq. 14 using Matlab’s eig routine. Denote the eigenfunctions computed for a given α by
Ek(ξ , η; α) with eigenvalue λk. We define a family of eigenspaces by

�α(λ) = span{Ek, ∀λk = λ}.
and define a generalized basis for the triangle by taking the span of all eigenfunctions with eigenvalue less
than a constant,

Eα(λ) =
⋃

λk≤λ

�α(λ).

In the case α = 0, the eigenfunctions are just the first M Dubiner polynomials. The first 15 polynomials are
plotted in Fig. 3. For λ = d(d + 2), the eigenfunctions are the Dubiner polynomials of top degree d, the
eigenspace �0(d(d + 2)) is given by the span of all polynomials of top degree d, and E0(d(d + 2)) = Pd.
We note that since the Sturm–Liouville equation (for all α) was constructed to be invariant under D3, the
eigenspaces �α(λ) must also be invariant under D3. By this we mean that the rotation or reflection of any
function in �α(λ) by any of the elements of D3 remains in �α(λ).

λ=-0.00 λ=3.00 λ=3.00 λ=8.00 λ=8.00

λ=8.00 λ=15.00 λ=15.00 λ=15.00 λ=15.00

λ=24.00 λ=24.00 λ=24.00 λ=24.00 λ=24.00

Fig. 3 Contour plots of the first 15 orthonormal eigenfunctions in the triangle for α = 0 (for which the eigenfunctions are
the Dubiner polynomials up to degree 4). The contour interval is 1.0. Many of the eigenfunctions have strong peaks near the
corners
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Fig. 4 Exponential
convergence of the
eigenspace residual,
plotted against the
polynomial truncation
used to represent the
eigenfunctions. The
eigenspace is the first 66
eigenfunctions for α = 10.
The residual for this space
is defined in Eq. 17
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We estimate the convergence properties of our algorithm by using the solutions from (14) and computing
their residual using (10). Since our numerically computed eigenfunctions are given by a polynomial of finite
degree, the terms in (10) can be computed exactly and thus the residual is also computed exactly. For an
eigenspace Eα , we define the residual by

max
Ek∈Eα

∫∫
Tr

(
1
λk

(L(Ek) − α2hEk
) − Ek

)2

∫∫
Tr

E2
k

. (17)

To demonstrate the convergence of our algorithm, we take α = 10 and M = 66. This would represent
polynomials up to degree 10 for the case of α = 0. In Fig. 4, we plot the residual for Eα as a function of
degree d of the polynomial space Pd used to compute the eigenfunctions Eα

k . Note that the plot is log-lin-
ear, illustrating the spectral convergence in the truncation dimension d. Since the matrix is symmetric, the
Rayleigh quotient argument shows that eigenvalues will converge at an even faster rate.

In this work, all eigenfunctions were computed such that their residual is less than 1 × 10−12.
The first 15 eigenfunctions for α = 5, 10 and 15 are plotted in Figs. 5, 6, and 7. They are all normalized

so that

λ=2.58 λ=7.19 λ=7.19 λ=12.67 λ=12.67

λ=13.24 λ=19.11 λ=19.84 λ=20.54 λ=20.54

λ=27.99 λ=27.99 λ=29.61 λ=29.61 λ=29.86

Fig. 5 Contour plots of the first 15 orthonormal eigenfunctions in the triangle for α = 5. The contour interval is 1.0. Note
that the eigenspaces for a given eigenvalue are now all of dimension one or two. This appears to occur for all α > 0
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λ=7.46 λ=15.56 λ=15.56 λ=22.96 λ=24.36

λ=24.36 λ=32.75 λ=32.96 λ=32.96 λ=34.05

λ=42.70 λ=42.70 λ=43.93 λ=43.93 λ=44.29

Fig. 6 Contour plots of the first 15 orthonormal eigenfunctions in the triangle for α = 10. The contour interval is 1.0

λ=12.58 λ=25.52 λ=25.52 λ=35.51 λ=38.08

λ=38.08 λ=47.69 λ=47.69 λ=50.65 λ=51.56

λ=60.65 λ=60.65 λ=61.39 λ=64.96 λ=64.96

Fig. 7 Contour plots of the first 15 orthonormal eigenfunctions in the triangle for α = 15. The contour interval is 1.0. Note
that the clustering of contours near the boundaries is much reduced over the case α = 0 (Dubiner polynomials) case

∫∫
Tr

E2
k = 1.

Visually, the graphs appear to confirm that increasing α leads to eigenfunctions with more uniform resolu-
tion. For α = 10 and 15, the length scale of the oscillations is clearly larger than that for α = 0. Also, the
contours are not as closely spaced near the boundary of the triangle, showing that the gradients are less
steep and the magnitude is reduced. For α = 0, the normalized eigenfunctions have values that exceed 10
in the corners of the triangle, while for α = 15, the maximum value is less than four.

One interesting difference between α = 0 and α > 0 concerns the dimension of the eigenspaces �α(λk).
As previously mentioned, for α = 0, the eigenvalues are integers, and the kth eigenspace is the span of
all polynomials of top degree k − 1. The kth eigenspace, as α is increased from 0, breaks into a collection
of eigenspaces of dimension 2, except when k is odd, in which case there will also be one eigenspace of
dimension one.

Finally, we note that just as with the PSWFs, the constant function is not in any finite truncation of the
α > 0 eigenfunctions.
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4 Approximation results

To demonstrate that the resolution of the eigenfunctions is more uniform for α > 0, we consider the
accuracy of truncated eigenfunction expansions of sinusoids. Consider the uniformly oscillating function
in Te,

f (x, y) = sin
(π

2
kx

)
sin

(π

2
ky

)
= sin

(
π

2
k

(√
3

2
ξ +

√
3

4
η +

√
3

4

))
sin

(
π

2
k

(
3
4
η + 1

4

))
.

Its expansion in terms of the first M eigenfunctions of (14) is given by

f̃ (ξ , η) =
M∑

k=1

f̂ (k)Ek(ξ , η; α), f̂ (k) =
∫∫
Tr

f (ξ , η)Ek(ξ , η; α).

We compute the expansion coefficients f̂ (k) numerically to a precision of 10−10. For convenience, we only
use truncated expansions where M = d(d+1) for integer d. Thus for α = 0 the expansion in M polynomials
is the traditional degree d polynomial expansion of f . For α > 0, these are no longer polynomial expansions;
however, we still consider them expansions of quasi-degree d.

We compute the L2 norm of the difference between f and its truncated expansion. Denote this residual
by R,

R(k, M, α) =
∫∫
Tr

(f − f̃ )2,

regarded as a function of the wave number, k, the number of terms in the expansion, M, and the value of
the bandwidth parameter, α. To examine this error, we first consider the case with k = 3 and contour R
as a function of M and α, shown in Fig. 8. As expected, for any fixed α, as the number of terms M in the
expansion is increased, the error decays rapidly, indicating the spectral convergence of these eigenfunc-
tions. More interesting, consider a fixed M as α is increased. Here we see that for this choice of f , there is
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Fig. 8 Error in the M-term eigenfunction expansion of
sin π3 x/2 sin π3 y/2, contoured as a function of M and
parameter α. Note that, for a fixed M, the optimal α will
reduce the error nearly by two orders of magnitude
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Fig. 9 The error in the 171-term (quasi-degree 17) eigen-
function expansion of sin πkx/2 sin πky/2, contoured as a
function of wave number k and parameter α. Note that, for
any k, there is an optimal α which grows with k
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an optimal value of α = 10 where the error is reduced significantly as compared to that for α = 0. For the
larger values of M, the error in the expansion is reduced by three orders of magnitude as α is increased
from 0 to 10.

In Fig. 9 we contour the same residual R, but this time with M = 171 and R treated as a function of
wave number k and bandwidth parameter α. This plot should be compared to that shown in Fig. 5 of [2].
The results are quite similar. In particular, for each k, there is optimal bandwidth parameter α > 0 that
has a significantly lower error when compared to α = 0. But as α is further increased, the error increases
until it becomes O(1). The plot also shows that the optimal value of α increases with k. This suggests that
the Anti-theorem 7.1 of [2] also applies to these eigenfunctions in the triangle: In approximating exp(ikx),
reduced error for moderate wave numbers k may be purchased at the price of increased error for small wave
numbers.

Thus, we have evidence to support a conclusion similar to that obtained in [2, 5] for approximating
functions f : In the over-resolved case, where the Fourier transform of f falls sufficiently fast, then the α > 0
eigenfunction expansion of f will not be as accurate as the α = 0 case. However, if the Fourier transform
of f decays at a slow rate, then to achieve a given level of accuracy requires the accurate resolution of
moderate wave numbers k. In this regime, the α > 0 eigenfunctions give significant improvements over
the α = 0 eigenfunctions.

We now consider the approximation error for a function which is singular outside the triangle. Modeled
after the example in [2], we look at a function of the form

f (x, y) = 1
x2 + y2 + γ 2

for pole location parameter γ . The complex valued singularities of this function are at y = ±i
√

x2 + γ 2.
The error is shown in Fig. 10, where we contour the residual R, as a function of pole location parameter
γ and bandwidth parameter α, with M = 171. This plot should be compared to that shown for the one-
dimensional results in Fig. 10 of [2]. The results are similar: adjusting α results in only a small reduction
in the error for small values of γ . For larger values of γ , there is an optimal value of α, but the gain is
small compared to the improvement seen when approximating sinusoids. Furthermore, for α larger than
the optimal value, the error decreases quickly, so as pointed out in [2], there is only a small margin of error
in choosing α.

Fig. 10 The error in the
171-term (quasi-degree
17) eigenfunction
expansion of
1/(x2 + y2 + γ 2),
contoured as a function of
pole location γ and
parameter α. Note that
for any γ there is an
optimal α which
minimized the error, but
if α is chosen slightly
larger than the optimal
value, the error increases
dramatically
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5 Conclusion

Based on the one-dimensional Sturm–Liouville equation for the PSWFs, we have generalized the Sturm–
Liouville equation for the Dubiner polynomials in the triangle. The result is a one-parameter family of
eigenfunctions. As the bandwidth parameter α is increased, the eigenfunctions appear to have a more
uniform resolution in the triangle, as shown by the fact that they better approximate the uniform oscil-
lations of sinusoids. Key properties of the original (α = 0) Sturm–Liouville eigenfunctions are retained:
the functions are orthogonal, invariant under D3, and so the truncated eigenfunction expansions converge
faster than any polynomial for smooth functions in the triangle independent of their boundary conditions.

As in the case of PSWFs [5], it is expected that these functions can lead to improvements for numerical
methods that rely on triangular domains or elements. Because these functions are expressed in terms
of the commonly used Dubiner polynomials, any existing code which uses Dubiner polynomials can be
easily modified to instead use a basis made up of linear combinations of Dubiner polynomials. However,
for nodal based algorithms, one difficulty remains: suitable collocation points with optimal interpolation
and quadrature properties for these new eigenspaces will need to be computed. Because of the evidence
presented here, we conjecture that these collocation points would have less clustering at the boundaries of
the triangle when compared to optimal polynomial interpolation points.

Appendix: Algebraic formulas for L in Te and Tr

A.1 The operator La is self-adjoint and negative-definite

Proof: We start with the following integral, for a fixed a, and integrate by parts. Let u, v ∈ H2(Te).∫ (a−1)/
√

3

−(a−1)/
√

3
La(u)v da⊥

=
∫ (a−1)/

√
3

−(a−1)/
√

3

∂

∂a⊥

(
p(a, a⊥)

∂u
∂a⊥

)
v da⊥

=
∫ (a−1)/

√
3

−(a−1)/
√

3
−p(a, a⊥)

∂u
∂a⊥

∂v
∂a⊥

da⊥ +
[

p(a, a⊥)
∂u
∂a⊥

v
]a⊥=(a−1)/

√
3

a⊥=−(a−1)/
√

3

=
∫ (a−1)/

√
3

−(a−1)/
√

3
u

∂

∂a⊥

(
p(a, a⊥)

∂v
∂a⊥

)
da⊥ +

[
p(a, a⊥)

∂v
∂a⊥

u + p(a, a⊥)
∂u
∂a⊥

v
]a⊥=(a−1)/

√
3

a⊥=−(a−1)/
√

3

=
∫ (a−1)/

√
3

−(a−1)/
√

3
La(v)u da⊥.

The boundary terms vanishes since p(a, a⊥) is zero at both end-points. The integral over Te is given by∫∫
Te

=
∫ 1

−1/2

∫ (a−1)/
√

3

−(a−1)/
√

3
da⊥ da,

so we have that∫∫
Te

La(u)v =
∫∫
Te

La(v)u.

If we assume that p > 0 in Te, then integration by parts only once shows that La is negative definite,∫ (a−1)/
√

3

−(a−1)/
√

3
La(u)u da⊥ = −

∫ (a−1)/
√

3

−(a−1)/
√

3
p(a, a⊥)

(
∂u
∂a⊥

)2

da⊥ ≤ 0,



J Eng Math (2006) 56:221–235 233

and thus
∫∫
Te

La(u)u ≤ 0,

where equality is only obtained if ∂u
∂a⊥ is zero almost everywhere.

A.2 Mapping Te to Tr

To map Te (given in Fig. 1) to Tr (given in Fig. 2), we use

ξ = 2
√

3
3 x − 2

3 y − 1
3 , x =

√
3

2
ξ +

√
3

4
η +

√
3

4
, (18)

η = 4
3 y − 1

3 , y = 3
4
η + 1

4
. (19)

The various coordinate systems in Te are related by

a = y, b = −
√

3
2

x − 1
2

y, c =
√

3
2

x − 1
2

y, (20)

a⊥ = x, b⊥ = −1
2

x +
√

3
2

y, c⊥ = −1
2

x −
√

3
2

y, (21)

and in Tr by,

a = 3
4
η + 1

4
, b = −3

4
ξ − 3

4
η − 1

2
, c = 3

4
ξ + 1

4
, (22)

a⊥ =
√

3
2

ξ +
√

3
4

η +
√

3
4

, b⊥ = −
√

3
4

ξ +
√

3
4

η, c⊥ = −
√

3
4

ξ −
√

3
2

η −
√

3
4

. (23)

A useful identity is

a2 + b2 + c2 = a2⊥ + b2⊥ + c2⊥ = 3
2

x2 + 3
2

y2 = 9
16

((
1
3

+ ξ

)2

+
(

1
3

+ η

)2

+
(

2
3

+ ξ + η

)2
)

. (24)

We also derive:

p(a, a⊥) = 9
4
(−ξ − η)(ξ + 1), (25)

p(b, b⊥) = 9
4
(ξ + 1)(η + 1), (26)

p(c, c⊥) = 9
4
(−ξ − η)(η + 1). (27)

The terms in parenthesis are all positive for (ξ , η) ∈ Tr, and thus p > 0 in Te.
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Now we turn to the differential operators. By the chain rule,

∂

∂x
= 2

√
3

3
∂

∂ξ
,

∂

∂y
= −2

3
∂

∂ξ
+ 4

3
∂

∂η
.

Using (2), we have

∂

∂a⊥
= ∂

∂x
= 2

√
3

3
∂

∂ξ
, (28)

∂

∂b⊥
= −1

2
∂

∂x
+

√
3

2
∂

∂y
= −2

√
3

3
∂

∂ξ
+ 2

√
3

3
∂

∂η
, (29)

∂

∂c⊥
= −1

2
∂

∂x
−

√
3

2
∂

∂y
= −2

√
3

3
∂

∂η
. (30)

The second derivatives are then given by

∂2

∂a2⊥
= 4

3
∂2

∂ξ2 , (31)

∂2

∂b2⊥
= 4

3
∂2

∂ξ2 − 8
3

∂

∂ξ

∂

∂η
+ 4

3
∂2

∂η2 , (32)

∂2

∂c2⊥
= 4

3
∂2

∂η2 . (33)

A.3 Transformation of L from Te to Tr

We show how the operator L is transformed by the mapping of Te to Tr. Starting with

L = 1
3

p(a, a⊥)
∂2

∂a2⊥
− 2a⊥

∂

∂a⊥
+ 1

3
p(b, b⊥)

∂2

∂b2⊥
− 2b⊥

∂

∂b⊥
+ 1

3
p(c, c⊥)

∂2
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− 2c⊥
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,

we first derive

− 2
(
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∂
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∂
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)
= −4

√
3

3

(
(a⊥ − b⊥)

∂

∂ξ
+ (b⊥ − c⊥)

∂

∂η

)
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and then derive

1
3
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∂
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∂
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Combining these results, we find

L = (1 − ξ2)
∂2

∂ξ2 + (1 − η2)
∂2
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∂
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∂
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For completeness, we also give L written in Cartesian coordinates in Te:

L = ∂

∂x

((
x2 − 1

2
y + 1

2

)
∂

∂x
− x

(
y + 1

2

)
∂

∂y

)
+ ∂

∂y

((
−y2 + 1

2
y + 1

2

)
∂

∂y
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(
y + 1

2

)
∂

∂x

)
. (36)
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